Best Approximate Integration Formulas and Best Error Bounds

By Don Secrest

1. Introduction. Let $f(x)$ be a member of the class of functions

$$
\begin{align*}
& F_{n}\left[x_{1}, x_{m}\right] \tag{1.1}\\
& \quad=\left\{f(x) \mid f \in C^{n-1}\left[x_{1}, x_{m}\right], f^{(n-1)} \text { absolutely continuous, } f^{(n)} \in L^{2}\left(x_{1}, x_{m}\right)\right\} .
\end{align*}
$$

Further, let $f\left(x_{i}\right)=f_{i}, i=1, \cdots, m$. We shall refer to the points, $\left(x_{i}, f_{i}\right)$, as the fixed points. We wish to find an optimal approximation to the integral

$$
\begin{equation*}
F(f)=\int_{x_{1}}^{x_{m}} f(x) d x \tag{1.2}
\end{equation*}
$$

We shall assume a bound M on the nth derivative of f of the form,

$$
\begin{equation*}
\int_{x_{1}}^{\Delta_{m}}\left[f^{(n)}(x)\right]^{2} d x \leqq M \tag{1.3}
\end{equation*}
$$

This is a pseudonorm which may be derived from the bilinear form

$$
\begin{equation*}
[f, g]=\int_{x_{1}}^{x_{m}} f^{(n)}(x) g^{(n)}(x) d x \tag{1.4}
\end{equation*}
$$

Following Golomb and Weinberger [1], we introduce a new bilinear form

$$
\begin{equation*}
(f, g)=[f, g]+\sum_{i=1}^{n} f\left(x_{i}\right) g\left(x_{i}\right) \tag{1.5}
\end{equation*}
$$

In this way we obtain a true norm since the quadratic form, (f, f), is positive definite if $m \geqq n$. If m is not greater than or equal to n we cannot form a norm in this way. Now we may write

$$
\begin{equation*}
(f, f) \leqq r^{2} \equiv M+\sum_{i=1}^{n} f_{i}^{2} \tag{1.6}
\end{equation*}
$$

We may now express any function f which passes through the fixed points as

$$
\begin{equation*}
f=\bar{u}+\frac{F(f)-F(\bar{u})}{F(\bar{y})} \bar{y}+w \tag{1.7}
\end{equation*}
$$

where \bar{u} is the function of smallest norm through the fixed points, \bar{y} is the function such that $(\bar{y}, \bar{y})=1$ and $y\left(x_{i}\right)=0, i=1, \cdots, m$,

$$
\begin{equation*}
F(\bar{y})=\sup \left\{|F(v)| \mid(v, v)=1 ; v\left(x_{i}\right)=0, i=1, \cdots, m\right\} \tag{1.8}
\end{equation*}
$$

and w is the remainder. Golomb and Weinberger [1] have shown that $(\bar{u}, \bar{y})=0$, $(\bar{u}, w)=0$ and $(\bar{y}, w)=0$. Thus

$$
\begin{equation*}
r^{2} \geqq(f, f) \geqq(\bar{u}, \bar{u})+\left(\frac{F(f)-F(\bar{u})}{F(\bar{y})}\right)^{2} \tag{1.9}
\end{equation*}
$$

Received February 20, 1964. Revised June 26, 1964.
or

$$
\begin{equation*}
F(\bar{u})-F(\bar{y})\left(r^{2}-(\bar{u}, \bar{u})\right)^{1 / 2} \leqq F(f) \leqq F(\bar{u})+F(\bar{y})\left(r^{2}-(\bar{u}, \bar{u})\right)^{1 / 2} \tag{1.10}
\end{equation*}
$$

Thus the optimal approximation to f is \bar{u}. This does not depend on the particular linear functional, F, we wish to approximate.
2. Determination of \bar{u} and \bar{y}. The function, \bar{u}, which minimizes

$$
\begin{equation*}
(f, f)=\int_{x_{1}}^{x_{m}}\left[f^{(n)}(x)\right]^{2} d x+\sum_{i=1}^{n} f^{2}\left(x_{i}\right) \tag{2.1}
\end{equation*}
$$

and passes through the fixed points is the function which minimizes the integral in (2.1) as the sum is a constant for any such function. This problem was solved in [2] for the case $n=2$ and later in [3] for any n. They show that \bar{u} is the spline function of order $2 n-1$. A spline function is defined as follows:
(a) The spline of order r, S_{r}, is a polynomial of degree r in the intervals

$$
\left(-\infty, x_{1}\right),\left[x_{1}, x_{2}\right), \cdots,\left[x_{m}, \infty\right)
$$

(b) S_{r} has continuous derivatives through the $(r-1)$ st. Thus for any f in $F_{n}\left[x_{1}, x_{m}\right]$ passing through the fixed points the spline function $S_{2 n-1}$ is the optimal approximant for computing the values of linear functionals. The best approximation to the integral (1.2) is the integral of $S_{2 n-1}$. It is shown in [4] that this integral is the "best integral" of Sard [5], [6], [7].

The function \bar{y} has the properties $(\bar{y}, \bar{y})=1$ and $\bar{y}\left(x_{i}\right)=0, i=1, \cdots, m$. Of all functions y with these properties,

$$
\begin{equation*}
F(\bar{y}) \geqq|F(y)| \tag{2.2}
\end{equation*}
$$

This problem was solved by Sard [5]. For the best integration formulas,

$$
\begin{equation*}
\left|\int_{x_{1}}^{x_{m}} f(x) d x-\sum_{i=1}^{m} A_{i} f\left(x_{i}\right)\right| \leqq M^{1 / 2}\left[\int_{x_{1}}^{x_{m}} K^{2} d x\right]^{1 / 2}, \tag{2.3}
\end{equation*}
$$

where K is the Peano kernel. Thus

$$
\begin{equation*}
\int_{x_{1}}^{x_{m}} \bar{y} d x=\left[\int_{x_{1}}^{x_{m}} K^{2} d x\right]^{1 / 2}=\sqrt{ } K_{2} \tag{2.4}
\end{equation*}
$$

For the functions $y, M=1$ and $y\left(x_{i}\right)=0$. Thus the maximum value $F(y)$ can take on is $\sqrt{ } K_{2}$. The kernel K^{2} was shown [8], [4] to be identical with the monospline whose roots are its knots x_{1}, \cdots, x_{m} and for which x_{1} and x_{m} are roots of order $2 n$. The monospline for this problem is

$$
\begin{equation*}
\bar{y} \sqrt{ } K_{2}=\frac{1}{(2 n-1)!}\left[\frac{\left(x-x_{1}\right)^{2 n}}{2 n}+S_{2 n-1}(x)\right] \tag{2.5}
\end{equation*}
$$

Note that

$$
\begin{equation*}
F(\bar{y})=\sqrt{ } K_{2} \tag{2.6}
\end{equation*}
$$

Both \bar{u} and \bar{y} contain $m+n-1$ unknown coefficients. These may be determined by the m relations $\bar{u}\left(x_{i}\right)=f_{i}$ and $\bar{y}\left(x_{i}\right)=0$ and the $n-1$ relations

$$
\bar{u}^{(i)}\left(x_{m}\right)=y^{(i)}\left(x_{m}\right)=0, \quad i=n, \cdots, 2 n-2 .
$$

3. Results. We may compute the coefficients of the spline function \bar{u} by solving a system of linear equations. Let us define a matrix,

$$
\mathbf{C}=\left[\begin{array}{cc}
\mathbf{D} & \mathbf{L} \tag{3.1}\\
\mathbf{H}^{\top} & 0
\end{array}\right]
$$

where the superscript \mathbf{T} denotes transposition. \mathbf{D} is an $(m-1)$-by- $(m-1)$ order matrix with

$$
\begin{equation*}
D_{i j}=\left(x_{m+1-i}-x_{j}\right)_{+}^{2 n-1} \tag{3.2}
\end{equation*}
$$

where the subscript + is defined as follows:

$$
\begin{align*}
(y)_{+} & = \begin{cases}y & y>0 \\
0 & y \leqq 0\end{cases} \tag{3.3}\\
L_{i j} & =\left(x_{m+1-i}-x_{1}\right)^{n-j} \tag{3.4}
\end{align*}
$$

and

$$
H_{i j}=\left(x_{m}-x_{i}\right)^{n-j}
$$

and 0 is an $(n-1)$-by- $(n-1)$ order null matrix. Let us further define vectors

$$
\begin{array}{ll}
\mathbf{F}_{L}=\left[\begin{array}{c}
\mathbf{f}_{L} \\
0
\end{array}\right], & \mathbf{F}_{H}=\left[\begin{array}{c}
\mathbf{f}_{H} \\
0
\end{array}\right], \\
\mathbf{T}_{L}=\left[\begin{array}{c}
\mathbf{P}_{L} \\
\mathbf{d}
\end{array}\right], & \mathbf{T}_{H}=\left[\begin{array}{c}
\mathbf{P}_{H} \\
\mathbf{d}
\end{array}\right], \tag{3.7}
\end{array}
$$

where

$$
\begin{array}{cc}
\mathbf{f}_{L}=\left[\begin{array}{c}
f_{m}-f_{1} \\
\vdots \\
f_{2}-f_{1}
\end{array}\right], \quad \mathbf{f}_{H}=\left[\begin{array}{c}
f_{m}-f_{1} \\
\vdots \\
f_{m}-f_{m-1}
\end{array}\right], \\
\mathbf{P}_{L}=\left[\begin{array}{c}
\left(x_{m}-x_{1}\right)^{2 n} / 2 n \\
\vdots \\
\left(x_{2}-x_{1}\right)^{2 n} / 2 n
\end{array}\right], \quad \mathbf{P}_{H}=\left[\begin{array}{c}
\left(x_{m}-x_{1}\right)^{2 n} / 2 n \\
\vdots \\
\left(x_{m}-x_{m-1}\right)^{2 n} / 2 n
\end{array}\right], \tag{3.9}
\end{array}
$$

and

$$
\mathbf{d}=\left[\begin{array}{c}
\left(x_{m}-x_{1}\right)^{n} / n \tag{3.10}\\
\vdots \\
\left(x_{m}-x_{1}\right)^{2} / 2
\end{array}\right] .
$$

In terms of these quantities the coefficients in \bar{u} are

$$
\begin{equation*}
a_{i}=\left[\mathbf{C}^{-1} \cdot \mathbf{F}_{L}\right]_{i}, \quad i=1, \cdots, n+m-2 \tag{3.11}
\end{equation*}
$$

where a_{i} is the coefficient of the term $\left(x-x_{i}\right)_{+}^{2 n-1}$ in \bar{u} when $i<m$, and it is the coefficient of the term $\left(x-x_{1}\right)^{m+n-i-1}$ for $i \geqq m$. Thus the best integral of f is

$$
\begin{equation*}
F(\bar{u})=\mathbf{T}_{\boldsymbol{H}}^{\boldsymbol{\top}} \cdot \mathbf{C}^{-1} \cdot \mathbf{F}_{L}+\left(x_{m}-x_{1}\right) f_{1} \tag{3.12}
\end{equation*}
$$

or, by symmetry,

$$
\begin{equation*}
F(\bar{u})=\mathbf{F}_{\boldsymbol{H}}^{\boldsymbol{\top}} \cdot \mathbf{C}^{\boldsymbol{\top}-1} \cdot \mathbf{T}_{L}+\left(x_{m}-x_{1}\right) f_{m} \tag{3.13}
\end{equation*}
$$

The maximum error bound for this integral is, by (1.10), (1.5) and (1.6),

$$
\begin{align*}
E_{\text {best }} & =F(\bar{y})\left(r^{2}-(\bar{u}, \bar{u})\right)^{1 / 2} \\
& =\left((M-[\bar{u}, \bar{u}]) K_{2}\right)^{1 / 2} \tag{3.14}
\end{align*}
$$

We may compute $[\bar{u}, \bar{u}]$ by integration by parts:

$$
\begin{align*}
{[\bar{u}, \bar{u}] } & =\int_{x_{1}}^{x_{m}} \bar{u}^{(n)} \bar{u}^{(n)} d x \\
& =(-1)^{n-1} \int_{x_{1}}^{x_{m}} \bar{u}^{(2 n-1)} \bar{u}^{\prime} d x \tag{3.15}\\
& =(-1)^{n-1}(2 n-1)!\sum_{i=1}^{m-1} a_{i}\left(f_{m}-f_{i}\right) \\
& =(-1)^{n-1}(2 n-1)!\mathbf{F}_{H}^{\top} \cdot \mathbf{C}^{-1} \cdot \mathbf{F}_{L} .
\end{align*}
$$

Since \bar{y} is a monospline with the same knots as the spline \bar{u} we may compute its coefficients in terms of the matrix \mathbf{C} also. From (2.5) and the fact that $\bar{y}\left(x_{i}\right)=0$ and x_{1} and x_{m} are zeros of multiplicity $2 n$, we may compute the coefficients in $S_{2_{n-1}}$ of (2.5). Then upon integrating \bar{y} we obtain

$$
\begin{equation*}
F(\bar{y})=\frac{(-1)^{n}}{[(2 n-1)!]}\left[\frac{\left(x_{m}-x_{1}\right)^{2 n+1}}{2 n(2 n+1)}-\mathrm{T}_{H}{ }^{\top} \cdot \mathbf{C}^{-1} \cdot \mathbf{T}_{L}\right] \frac{1}{K_{2}^{1 / 2}}=K_{2}^{1 / 2} \tag{3.16}
\end{equation*}
$$

4. Discussion. We may obtain the coefficients for the best integration formulas by noticing that the functional values enter (3.12) linearly. Thus we may write

$$
\begin{equation*}
F(\bar{u})=\sum_{i=1}^{m} W_{i} f_{i} \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{m+1-i}=\left(\mathrm{T}_{H}^{\top} \cdot \mathbf{C}^{-1}\right)_{i}, \quad i=1, \cdots, m-1 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{1}=x_{m}-x_{1}-\sum_{i=2}^{m} W_{i} \tag{4.3}
\end{equation*}
$$

Similar relations follow from (3.13).
When $m=n$, the best integration formulas are the same as those obtained by integrating the Lagrange interpolation coefficient. In this case $[\bar{u}, \bar{u}]=0$ and so the error bound is just the usual bound obtained from the Peano kernel. When $[\bar{u}, \bar{u}] \neq 0$ the error bound (3.14) is better than the bound used by Sard [5], [6], [7], for these formulas.

In this paper we have discussed the error bound for integration. The spline function \bar{u} is the optimal approximation for any function in $F_{n}\left[x_{1}, x_{m}\right]$ which passes through the fixed points and may be used for evaluating any linear functional. To find the optimal error bound it is only necessary to compute the corresponding \bar{y}. In this way we may find optimal error bounds for interpolation and differentiation. This will be discussed further in a future paper.

Acknowledgment. The author would like to thank the referee for calling to his attention a wealth of important literature on this subject.

Chemistry Department
University of Illinois
Urbana, Illinois

1. Michael Golomb \& H. F. Weinberger, "Optimal approximation and error bounds," On Numerical Approximation, R. E. Langer (Ed.), Proceedings of a Symposium, Madison, April 21-23, 1958, Publ. No. 1 of the Mathematics Research Center, U. S. Army, Univ. of Wis., Univ. of Wis. Press, Madison, Wis., 1959, p. 117-190. MR 22, *12697.
2. J. L. Walsh, J. H. Ahlberg \& E. N. Nilson, "Best approximation properties of the spline fit," J. Math. Mech., v. 11, 1962, p. 225-234. MR 25 *738.
3. C. De Boor, "Best approximation properties of spline functions of odd degree," J. Math. Mech., v. 12, 1963, p. 747-749. MR 27 *3982.
4. I. J. Schoenberg, "Spline interpolation and best quadrature formulae," Bull. Amer. Math. Soc., v. 70, 1964, p. 143-148. MR 28 *394.
\rightarrow Arthur Sard, "Best approximate integration formulas; best approximation formulas," Amer. J. Math., v. 71, 1949, p. 80-91. MR 10, 576.
5. Leroy F. Meyers \& Arthur Sard, "Best approximate integration formulas," J.Math. Phys., v. 29, 1950, p. 118-123. MR 12, 83.
6. Arthur Sard, Linear Approximation, Math. Surveys No. 9, Amer. Math. Soc., Providence, R.I., 1963.
7. I. J. Schoenberg, "Spline functions, convex curves and mechanical quadrature," Bull. Amer. Math. Soc., v. 64, 1958, p. 352-357. MR 20 *7174.
