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1. Introduction. Let f(x) be a member of the class of functions 

FnIXlX Xm] 

= {f(x) If E Cn l [xi X m], f(n-) absolutely continuous, f(n) EL2(x1, xm)}. 

Further, let f(xi) = fi X= 1, * m. We shall refer to the points, (xi, fi), as the 
fixed points. We wish to find an optimal approximation to the integral 

r$" 

(1.2) F(f) = f f(x) dx. 
x1 

We shall assume a bound M on the nth derivative of f of the form, 

(1.3) f dx < M. 
z1 

This is a pseudonorm which may be derived from the bilinear form 

(1.4) [f, ] = I In)(X)g(n)(x) dx. 
x1 

Following Golomb and Weinberger [1], we introduce a new bilinear form 
n 

(1.5) (f, ) = [f, g] + Z f(xi)g(xi). 

In this way we obtain a true norm since the quadratic form, (f, f), is positive defi- 
nite if m > n. If m is not greater than or equal to n we cannot form a norm in this 
way. Now we may write 

n 
(1.6) (f, f) _ r A + X2f2 

i=1 

We may now express any function f which passes through the fixed points as 

(1.7) f = u + F( W) 

where u is the function of smallest norm through the fixed points, y is the function 
such tbhat (y )=1 and y(xi) = O, i = 1,**,m 

(1.8) F(y) = supil F(v)I | (v, v) = 1; v(xi) = 0, i = 1, * M* , 

and w is the remainder. Golomb and Weinberger [1] have shown that (u, y) = 0, 
(u,w) = 0 and (y, w) = 0. Thus 

(1.9) > > (f,f) > (,i0 u) + F(9) 
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or 

(1.10) F(ii) - F(y) (r2 - (u, u) )1/2 5 F(f) < F(u) + F(y) (r2 - f( u) )2 

Thus the optimal approximation to f is ui. This does not depend on the particular 
linear functional, F, we wish to approximate. 

2. Determination of a and g. The function, u, which minimizes 

(2.1) (f,f) = f [f'(x)]2 dx + Ef2(Xi) 
1 -1j 

and passes through the fixed points is the function which minimizes the integral 
in (2.1) as the sum is a constant for any such function. This problem was solved 
in [2] for the case n = 2 and later in [3] for any n. They show that u is the spline 
function of order 2n - 1. A spline function is defined as follows: 

(a) The spline of order r, Sf, is a polynomial of degree r in the intervals 

(-? XIX1 [XIl, X2)) 
.. 

* [Xmn X ?? 

(b) S7 has continuous derivatives through the (r - 1)st. Thus for any f in 
F4[x, , xm] passing through the fixed points the spline function S2n-1 is the optimal 
approximant for computing the values of linear functionals. The best approxima- 
tion to the integral (1.2) is the integral of S2n-.-. It is shown in [4] that this inte- 
gral is the "best integral" of Sard [5], [6], [7]. 

The function y has the properties (y, y) = 1 and p(xi) = O, i = 1, *,. 
Of all functions y with these properties, 

(2.2) F(y) F F(y). 

This problem was solved by Sard [5]. For the best integration formulas, 

(2.3) L:|f(x) dx- Aif(xi) | M"2 [L:m K2 dx], 

where K is the Peano kernel. Thus 
"Zm -xm 1/2 

(2.4) L ydx= I K2 dx = /K2. 

For the functions y, M 1 and y(xQ) = 0. Thus the maximum value F(y) can 
take on is V/K2 . The kernel K2 was shown [8], [4] to be identical with the mono- 
spline whose roots are its knots xl, ** *, x. and for which xi and xm are roots of 
order 2n. The monospline for this problem is 

(2.5) vIK2 (2n- 1 [x )2n + 2 -l( ) 

Note that 

(2.6) F() = V/K2. 

Both u and y contain m + n - 1 unknown coefficients. These may be determined 

by the m relations u(xi) = fi and p(xi) = 0 and the n - 1 relations 

U(i)(Xm) = y(il(Xff4) = 0 i = n, ..., 2n -2. 
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3. Results. We may compute the coefficients of the spline function u by solving 
a system of linear equations. Let us define a matrix, 

(3.1) c=[HT 0], 

where the superscript T denotes transposition. D is an (m - l)-by-(m - 1) order 
matrix with 

(3.2) D (j = x+ - 

where the subscript + is defined as follows: 

(3.3) (Y)+ =, 

(3.4) Lij = (Xm+_i -X) 

and 

Hij = (Xm -Xi)ni, 

and 0 is an (n l)-by-(n -1) order null matrix. Let us further define vectors 

(3.6) FL = [j FH =[d] 

where 

fm -fi fm -fi 
(3.8) fL = . ], fH = . X 

Lf2 fl Lfm fi- f -_ 

(xm - /2n (Xm xl)/2n 
(3.9) PL = L X PH=L.mX 

_ (X2 - X1)2 /2n_j (Xm - xm_j) 2/2n_j 
and 

(Xm - xl) n/n 
(3.10) d= . I 

L (Xm - xl)2/2j 

In terms of these quantities the coefficients in u are 

(3.11) ai = [C-1 FL]iX i = 1... , n + m -2, 

where ai is the coefficient of the term (x - xi)+ in u when i < m, and it is the 
coefficient of the term (x - xl)+n-i- for i 2 m. Thus the best integral of f is 

(3.12) F(a) = THT.C-1FL + (Xm- xl)fl 

or, by symmetry, 

(3.13) F(a) - FHT.CT * TL + (Xm - X1)fm . 



82 DON SECREST 

The maximum error bound for this integral is, by (1.10), (1.5) and (1.6), 

E = F(y)2 (r -( g) ) 1/2 

(3.14) Ebet 
F 

- (r)1 
((M - [ui u])K2)1/2. 

We may compute [u, u] by integration by parts: 

[X U] = f 
U(n) f(n) dx 

(-1)n-1 fr (2n-1)u 'dx 
(3.15) I 

m-1 
= (_1)'n1(2n - 1)! E ai(fm- fi) 

= (1)nI (2n - 1)! FHT. C-1FL. 

Since y is a monospline with the same knots as the spline u we may compute its 
coefficients in terms of the matrix C also. From (2.5) and the fact that P(xi) = 0 
and xl and xm are zeros of multiplicity 2n, we may compute the coefficients in 

S2nl of (2.5). Then upon integrating y we obtain 

(3.16) F (g) T -T [X~x)2~ H.d LI-i=K/2. 
[(2n -1)!] L2n(2n + 1) j K2 

4. Discussion. We may obtain the coefficients for the best integration formulas 
by noticing that the functional values enter (3.12) linearly. Thus we may write 

m 
(4.1) F(ui) = Wfi 

where 

(4.2) Wml+-i = (THT.c1)i, j = 1, * , m- 1, 

and 

(4.3 ) W, = xm - xl - Wi . 

Similar relations follow from (3.13). 
When m = n, the best integration formulas are the same as those obtained by 

integrating the Lagrange interpolation coefficient. In this case [u, u] = 0 and so 

the error bound is just the usual bound obtained from the Peano kernel. When 

[u, ut] # 0 the error bound (3.14) is better than the bound used by Sard [5], [6], 

[7], for these formulas. 
In this paper we have discussed the error bound for integration. The spline func- 

tion u is the optimal approximation for any function in Fn[xl, Xm] which passes 

through the fixed points and may be used for evaluating any linear functional. 
To find the optimal error bound it is only necessary to compute the corresponding 
y. In this way we may find optimal error bounds for interpolation and differentiation. 
This will be discussed further in a future paper. 
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